Please wait a minute...
首 页   关 于   联系我们
高级检索
J Shanghai Jiaotong Univ Sci  2015, Vol. 20 Issue (6): 641-648    DOI: 10.1007/s12204-015-1671-2
  本期目录 | 过刊浏览 | 高级检索 |
Compliant Assembly Modeling and Deformation Analysis Considering Macro Residual Stress in Engineering Component
张丽娜,王华,李淑慧
 
Compliant Assembly Modeling and Deformation Analysis Considering Macro Residual Stress in Engineering Component
Li-na ZHANG,Hua WANG(),Shu-hui LI
Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China
全文: PDF(5222 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要  
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丽娜
王华
李淑慧
关键词 compliant assemblyresidual stressassembly deformationfinite element analysis (FEA)    
Abstract

Based on the manufacturing history chain, a component’s macro residual stress is introduced to the subsequent assembly model. In the simulated method, the simulation cost is saved via mapping the bulk stress profile directly to the component compared to our previous study. It thus facilitates the finite element analysis (FEA) which takes the component location in blank and the thickness of blank as two influence parameters. The methodology is proved to be feasible by the validation experiment designed for a typical assembly structure from the aerospace industry. The results show that the bulk stress originating from material preparation affects the downstream large-scale assembly deformation. The investigation of this research helps systematically to improve compliant assembly precision.

Key words 
收稿日期: 2014-03-08      出版日期: 2016-01-20
ZTFLH:     
基金资助: 
通讯作者: 王华     E-mail: huawang@sjtu.edu.cn
引用本文:   
张丽娜, 王华, 李淑慧. Compliant Assembly Modeling and Deformation Analysis Considering Macro Residual Stress in Engineering Component[J]. J Shanghai Jiaotong Univ Sci, 2015, 20(6): 641-648.
Li-na ZHANG, Hua WANG, Shu-hui LI. Compliant Assembly Modeling and Deformation Analysis Considering Macro Residual Stress in Engineering Component. J Shanghai Jiaotong Univ Sci, 2015, 20(6): 641-648.
链接本文:  
http://www.sjtuj.com/jsjtune/CN/10.1007/s12204-015-1671-2      或      http://www.sjtuj.com/jsjtune/CN/Y2015/V20/I6/641
Fig. 1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Model U3/mm Difference/μm
Predicted Observed
H-55A (#1) 0.871 6 0.794 3 77.3
L-55A (#2) 0.866 1 0.781 5 84.6
H-55C (#3) -1.539 6 -1.495 0 -44.6
L-55C (#4) -1.534 2 -1.406 7 -127.5
Assembly of L-55A and H-55A 0.811 7 0.728 1 83.6
Assembly of L-55C and H-55A 0.100 6 0.149 5 -48.9
Assembly of L-55C and H-55C -1.224 6 -1.037 8 -186.8
Table 1  
Fig.8  
Fig.9  
[1] Withers P J, Bhadeshia H K D H. Residual stress. Part 2. Nature and origins[J]. Materials Science and Technology, 2001, 17(4): 366-375.
[2] Liu S C, Hu S J. Variation simulation for deformable sheet metal assemblies using finite element methods[J]. Journal of Manufacturing Science and Engineering, 1997, 119(3): 368-374.
[3] Camelio J, Hu S J, Ceglarek D. Modeling variation propagation of multi-station assembly systems with compliant parts[J]. Journal of Mechanical Design, 2003, 125(4): 673-681.
[4] Hu M, Lin Z Q, Lai X M, et al.Simulation and analysis of assembly processes considering compliant, non-ideal parts and tooling variations[J]. International Journal of Machine Tools and Manufacture, 2001, 41(15): 2233-2243.
[5] Cai W, Hu S J, Yuan J X.Deformable sheet metal fixturing: Principles, algorithms, and simulations[J]. Journal of Manufacturing Science and Engineering, 1996, 118(3): 318-324.
[6] Zhang L N, Wang H, Li S H, et al.A quantitative modeling and decoupling method for assembly deformation analysis considering residual stress from manufacturing process[J]. Journal of Aerospace Engineering, 2014. DOI: 10.1061/(ASCE)AS.1943-5525.0000400, 04014073 (published online).
[7] Nervi S. A mathematical model for the estimation of the effects of residual stresses in aluminum plates[D]. Saint Louis, Missouri, USA: Department of Mechanical and Aerospace Engineering, Washington University, 2005.
[8] Robinson J S, Tanner D A, Truman C E, et al.Measurement and prediction of machining induced redistribution of residual stress in the aluminum alloy 7449[J]. Experimental Mechanics, 2011, 51(6): 981-993.
[9] Liao Kai, Wu Yun-xin, Gong Hai, et al.Prediction and measurement of quenching-prestretching stress in aluminum alloy thick plate[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(10): 1901-1906 (in Chinese).
[10] Gong H, Wu Y X, Liao K.Prediction model of residual stress field in aluminum alloy plate[J]. Journal of Central South University of Technology, 2011, 18(2): 285-289.
[11] Wu Yun-xin, Gong Hai, Liao Kai.Evaluation model of residual stress field of pre-stretched aluminum alloy plate[J]. Journal of South China University of Technology: Natural Science Edition, 2011, 39(1): 90-94 (in Chinese).
[12] Sim W M. Challenges of residual stress and part distortion in the civil airframe industry [EB/OL] (2014-03-08). .
[13] Young K A.Machining-induced residual stress and distortion of thin parts[D]. Saint Louis, Missouri, USA: Department of Mechanical Engineering, Washington University, 2005.
[1] WANG Si-ling1* (王司令), SONG Bao-wei1 (宋保维), DUAN Gui-lin2 (段桂林), DU Xi-zhao3 (杜喜昭. Automatic Wireless Power Supply System to Autonomous Underwater Vehicles by Means of Electromagnetic Coupler[J]. 上海交通大学学报(英文版), 2014, 19(1): 110-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
沪交ICP备05221
版权所有:上海交通大学学报编辑部
主管单位:上海交通大学 主办单位:上海交通大学出版社 出版单位:上海交通大学出版社有限公司
地址:上海市华山路1954号(200030) 电话:021-62933373 传真:021-62933373 E-mail: xuebao3373@sjtu.edu.cn